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External field Dirac equation with separable potential 
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Central Research Institute for Physics, POB 49, H-1525 Budapest 114, Hungary 

Received 2 June 1986 

Abstract. The general form of the rotation, space reflection, time reversal and charge 
conjugation invariant separable potential for the Dirac equation is investigated. A concrete 
potential is constructed which reproduces the Is,,* and 2p,,,> eigenvalues of the cut-off 
Coulomb potential 

1. Introduction 

The separable potentials have served as very useful tools in facilitating the solution 
of various dynamical problems in non-relativistic quantum mechanics. It might be 
useful to consider their application for studying certain questions in relativistic quantum 
mechanics as well, e.g. in the so-called external field problems their use can lead to 
important calculational simplifications. Sucher ( 1985) used a separable potential for 
investigation of the continuum dissolution problem. A closely related problem, namely 
the pair creation in a time-dependent electromagnetic field, was studied using separable 
potentials (Hrask6 et a1 1986). 

The two-centre Dirac problem, concerning a Dirac particle moving in the field of 
two potentials, is another example where the use of separable potentials leads to 
considerable simplifications in the solution of the dynamical equations. In fact, for 
local potentials this problem involves solution of partial differential equations without 
separation of variables. The potentials obtained in the present work will be used for 
a two-centre study in a following paper (Toth et a1 1987). 

In this paper we want to construct a simple separable interaction which reproduces 
one of the most interesting qualitative features of a static Coulomb field in the Dirac 
equation: with increasing potential strength the energy of the  IS,,^ ground state becomes 
smaller than -mc*,  i.e. it disappears in the lower continuum. This fact plays an 
important role in the instability of the QED vacuum in strong electromagnetic fields 
(e.g. Rafelski et al 1978). 

In 0 3 we construct the general separable potential which is invariant under rotation, 
space reflection, time reversal and charge conjugation. In  0 4 using the partial wave 
expansion we derive the energy eigenvalue equation and the normalised wavefunctions. 
In 0 5 we investigate the behaviour of these eigenfunctions at the origin and at infinity. 
For a concrete construction we turn to the cut-off Coulomb potential, whose eigenvalue 
problem was solved by Pieper and Greiner (1969). Using their binding energies and 
wavefunctions we construct a separable potential which reproduces the  IS,,^ and 2p,,, 
energy eigenvalues for 80 d 2 c 170. 
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2. Notation 

We use units in which h = c = 1. The Dirac equation in coordinate representation is 

(1) i w = ( H o +  v ) + ( i , r ) = ( a p + p m +  V ( t ,  r ) ) + ( t ,  r )  
at 

where 

the cr, are the Pauli matrices and  U is the 2 x 2  unit matrix. 
We will use the common eigenvectors of the following commuting operators: the 

square of the momentum, the square and third component of the total angular momen- 
tum, space reflection and p. 

By definition 

( In  the non-relativistic theory p is absent and  the pjlm quantum numbers define these 
common eigenvectors unambiguously. In the relativistic case there are two linearly 
independent vectors with these quantum numbers. We can distinguish these two vectors 
by another quantum number which can be, for example, the sign of the energy or i t  
can be the eigenvalue of the p operator.) 

In momentum representation 

where a is the spinor index (a = 1 , 2 , 3 , 4 ) ,  $ = p / I p J  and I f =  2 j  - 1. 

analogous relations for the IpjlmQ): 
Using the completeness and orthonormality relations for the Ip, a )  we can derive 

3. Symmetries 

The general form of a separable potential is 
N 

Qs:ep= 1 I k ) A k / ( l l  
k . l =  1 
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where A k l  are real constants and  the Ik) are arbitrary vectors normalised to unity. This 
freedom can be reduced by requiring that the general properties of Vsep and V, the 
exact potential, be the same. One of the basic properties of a potential is its symmetry: 
this symmetry assures the conservation of different quantum numbers during physical 
processes. Vsep will conserve these quantum numbers, too, if it is diagonal in them. 
The cut-off Coulomb potential is invariant under rotation, space reflection and  time 
reversal, so the most general possible separable potential is 

where 

I  i j l m ~ )  = JOE d p  pgurQ ( p ) I PjlmQ). 

This vector is normalised to unity if the glJIQ ( p )  form factors satisfy 

In momentum representation 

By a unitary transformation this potential can be diagonalised in the i and a 
quantum numbers, too: 

Time reversa! invariance imposes another constraint on the form factors: VSep 

(10) 

This condition is fulfilled if the phase of glJ/Q does not depend on p .  This phase factor 
does not appear in the potential, so it can be chosen to be unity. This is why all the 
form factors are real functions of their argument. 

In QED there is another exact symmetry: charge conjugation. For the Dirac equation 
with an  external field it is no longer a symmetry. Nevertheless it has an  effect on the 
form of the external field: V (and so Vsep too) must commute with e, the charge 
conjugation operator. This requirement is satisfied if the potential strength and  the 
form factors with the same i, j but different 1 and a are equal. 

commutes with T only if 

gc/Q(p)gdJ/Q ( p ' )  = gtJ/Q( P)gcfQ( p ' ) '  

We conclude this section by the general form of the possible separable potential 
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4. Solution of the eigenvalue problem 

The Hamiltonian is invariant under rotation and space reflection, so we can use the 
partial wave expansion. The wavefunction in a given partial wave is 

From now on we omit the l / p  denominator and the angle-dependent fractions and 
denote this wavefunction by 

We restrict ourselves to a given partial wave and also omit these j l m  indices. 
The separable potential is diagonal as the original V: 

The energy eigenvalue equation is 

If EB E [-m, + m ]  then the operator E - Ho has a unique inverse, the free Green 
operator Go. Using this operator we obtain 

(16) I lc~B) = c 6 0  ( EB ) I io)( ~ Q I  ( ~ l g ) .  
iQ  

Multiplying by the Ii‘Q’) we obtain an algebraic equation for the (I’QIQB) which can 
be solved unambiguously only if its determinant is zero: 

det(6ii.6,,,- hiQ(i’Q’I 60(EB)liQ)) = 0. (17) 

This-generally transcendent-equation determines the energy eigenvalues. The nor- 
malised eigenfunction is 

In momentum representation 
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5. Constraints imposed by the exact wavefunction 

We require that the wavefunction obtained with the separable potential behave as the 
exact one at the origin and at infinity. 

The exact eigenfunction is given in coordinate representation. The transformation 
between the two representations is 

if 

The exact wavefunction for r + 0 behaves as 

Via the above transformation this behaviour limits the possible behaviour of the form 
factors at infinity: 

The exact eigenfunction decreases exponentially at the infinity. The transformation 
for this case gives 

6. Numerical results 

In this section we construct a separable potential which reproduces the 
eigenvalues of the cut-off Coulomb potential 

and 2 ~ , , ~  

Ro = 1.2 fm All3 A = 0.007 332’+ 1.302 +63.6. 

The j I  quantum numbers are therefore $ , O  and 4, 1, respectively. The exact potential 
is diagonal and all the diagonal elements are non-zero. This means that we must take 
both the a = 1 and the a = -1 values of a. We choose the simplest case where i = 1. 
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A possible choice of the normalised form factors which satisfy the constraints investi- 
gated in the preceding section is 

The p ,  and p2 parameters will be determined later. 
With these form factors both the Go matrix elements and the coordinate representa- 

tion wavefunction can be calculated analytically. The energy eigenvalue equations are 

The Go matrix elements in the two partial waves-due to charge conjugation-are not 
independent of each other: 

G9+,,+,(E) = -Gkl,-l(-E) 

G9_, ,_ , (E)  = -G:+,,+,(-E) (27) 

G 9 _ , , + , ( E )  = G9+, ,_ , (E)  = G + , , - , ( E )  = G:- , .+p ) .  
The p1 and pz parameters can be varied freely because for each p1 and p2 such 

A + l  and A - l  exist that the energy eigenvalues are equal to the exact ones. We can 
choose them for example by requiring that 

II I h a c J -  I(Lsep)ll 

be minimal as a function of p1 and p 2 .  However, this norm is a very flat function of 
the parameters, so instead of a definite value we get intervals for p1 and p2 from which 
we can choose freely. 

It would be desirable to give p , ( Z ) ,  F ~ ( Z ) ,  A+,(Z),  A-,(Z) functions which give 
the correct value for every 2. Unfortunately, the 2pli2 energies for 2 6 4 0  are in the 

Figure 1 .  Comparison of the exact (full curve) and separable potential (broken curve) 
l ~ , , ~  and 2p,,, energy eigenvalues for 8 0 ~ 2 s  180. 
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t 
Figure 2. Comparison of the exact (full curve) and separable potential (broken curve) 
Is, ,* wavefunctions for Z=90. u ( r )  is the upper, u ( r )  is the lower component. ( r  i s  
measured in Compton wavelength units). 

= A  

Figure 3. As figure 2 for 2 = 120. 

0.99 s EB C 1.0 interval and  to give back these values the above functions must have 
a relative error of which cannot be achieved by simple functions. However, in 
the 80 zs 2 C 170 region greater relative error is allowed and we succeed with the 
functions 

p , ( Z )  = 5 . 2 8 ~  10-4Z2-0.06252+2.70 

p Z ( Z )  =3.33 x 10-422-0.040Z+3.60 
(28) 

h + , ( Z )  = 0 . 6 4 + 0 . 0 6 4 2 + 7 . 7 6 ~  10-4Z2-9.12(e0.01Z - 1) 



2780 L Foldy, A To'th and J Re'vai 

-0.91 

Figure 4. As figure 2 for Z = 150. 

The presence of the exponential factors is due to the fact that for large 2 the exact 
binding energies-which d o  not involve the electron's rest mass-increase very quickly 
which require the rapid increase in A + ,  and  A- , .  

Using these 2 dependencies we can calculate the energy eigenvalues and the 
wavefunctions. The energies are compared to the exact ones in figure 1 and the 
wavefunction for three different values of 2 in figures 2-4. 
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